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Ballistic flights and random diffusion as building blocks for Hamiltonian kinetics
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We propose a kinetic approach to transport in Hamiltonian systems with a mixed phase space. The approach
is based on the decomposition of the dynamical picture into two contributigh&allistic flights, and(b)
random diffusion. The kinetic scheme leads to a stochastic process with statistical properties which are similar
to those produced by the original Hamiltonian. We show that our approach helps in obtaining an insight into
several properties of Hamiltonian kinetics such as anomalous diffusion, chaos-assisted population exchange,
and current rectification. In particular, the chaos-assisted exchange offers a classical counterpart for the re-
cently reported chaos-assisted tunneling.
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[. INTRODUCTION the statistical properties of the original Hamiltonian system.
The result of such modeling is a kinetic scheme which leads

The issue of how statistical laws emerge from micro-to a process with the same basic statistical properties as of
scopic dynamical evolution has been a subject of interest fothe trajectories in the Hamiltonian system. In Sec. Il we
a long time[1]. In particular, the question of deterministic Show how this approach can be used for the description of
diffusion in Hamiltonian Systems has been Centra' in the fie'dhree different effects: deterministic Hamiltonian diﬁusion,
of nonlinear dynamics. Kinetic studies of Hamiltonian sys-chaos-assisted population exchange between islands, and
tems have been shown to provide a link between Stochastwrrent rectiﬁca.tion in Hamiltonian I’atChetS. We end W|th
processes and deterministic dynamj@$ and have led to conclusions in Sec. IV.
interesting examples of Brownian and anomalous mdt&n

In general, characteristic to Hamiltonian systems are
mixed phase spaces, which consist of chaotic and regular
regions. The presence of complex boundaries between these
regions makes a complete separation into chaotic and regular
regions impossible. Due to sticky barrigfermed bycantori
[4]), a trajectory can be trapped for a long time near the
corresponding regular islands and produce either long unidi-
rectional flights or localized rotational motions. It is known
by now that such long correlated motions cause the failure of
the simple Brownian description of Hamiltonian kinetics
[2,3]. Examples for non-Brownian behavior are, among oth-
ers, the appearance of anomalous diffusion, for which the
degree of anomaly depends on the statistical properties of the
flights [2,3], strongly nonuniform mixing[5], and fractal
conductance fluctuations in billiard transmittei§]. Re-
cently, it has been also shown that the generation of directed
currents in Hamiltonian ratchets is obtained by introducing
asymmetry into flights in opposite directions through break-
ing symmetry in the regular island structures in phase space
[7,8].

In this paper we show how the Hamiltonian kinetics can
be modeled using two types of “building blocks"—nballistic
flights (BF) and random diffusion(RD). Following the
continuous-time random walkCTRW) formalism [3], we e —
construct a stochastic model which describes the transport 0 1x10°  2x10°  3x10*  4x10°
properties of the original Hamiltonian in terms of these t
building blocks. We demonstrate that such an approach leads

to new insights into phenomena typical of Hamiltonian sys-  F|G. 1. (a) The kinetic scheme of a mixed phase space. Nota-
tems with a mixed phase space. tions are given in the texih) A trajectory corresponding to the

The paper is organized as follows. In Sec. Il we formulateHamiltonian in Eq(4) with =27, E=5. The inset shows part of
the algorithm of the kinetic modeling using the BF and RD Poincaresection that corresponds to the long flight in the positive
building blocks. For this purpose we need information aboutirection. All plotted quantities are dimensionless.
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Il. BUILDING OF THE KINETIC SCHEME corresponding island. The duration of the flights can be com-
eDIeter characterized by the probability density function

Many Hamiltonian systems are generically nonintegrabl %PDF) of the sticking times to the boundary of the islands

and have a mixed phase space which contains chaotic r 3]
gions and regular island9]. These islands are impermeable "™

to chaotic trajectories and, at first glance, do not contribute tg Assume that there exi¥{ different islands with winding
J y 9 : numberv;, i=1,... N, which are embedded in the chaotic

the system kinetics. But the exclusion of the regular islands . . : C
from consideration is incorrect due to the presence o rea. Every island is characterized by a PIaft) of sticking

“sticky” complex boundaries between chaotic and regular imes. The ra”do.“? d|ffus_|on_ IS cha_ract.erlzed by a PDF
regions. Due to a set of barriers, formed by canidii a (). The probability of sticking to théth island, after the

. : nd of a random diffusion event, 5. The probabilityp; is
trajectory can be trapped for a long time near the correspong: . : . . O !
ing: islan)gls. This Ieggs to the ap?pearance of long baﬁistigehe weight fgctor of |s]and, namely, its contribution to the
flights (in the case of nonzero winding numbarsof the otal dynamical evolution of a system. Due to the conserva-

; A n —
islands or to a localized rotational motiotfor the winding t'or_}_ﬁf pkr.()ba.b'l'ty?i?lpi_l‘ be obtained f h
numberv =0). For some islands the sticking times near the e kinetics of the system can be obtained from the

boundaries can be anomalously long resulting imLealks propagatorP_(x,t), €., t_he propability density of a particle
[2,3]. So, the regular islands manifest themseldgaami- tﬁ belatx at timet [4]. ThlshquqtlolrI ganﬂ_behconst(;ucteg frorg_f
cally as segments of ballistic motion in the trajectorisse ]E ee ercvenéarfy ever;lt.sr\]/v Ic mg u he '9 és g? ré:m %m "
inset in Fig. 1b)]. The trajectories between two consecutive usion. We define a flight event by the probability den$gy

flights display random Brownian motion that can be de- _ s N
scribed by some diffusion coefficient. Vit = pisx=vit) (1), 1)
Following the CTRW formalisnj3], the Hamiltonian ki- VéF

ich accounts for the velocity; and the distribution of
cking timesy;(t), which correspond to islanid
The random diffusion events are chosen from the PDF,

netics can be represented as a set of alternating pieces
random diffusion(RD) and ballistic flights(BF). The appli-
cability of the CTRW description stems from the assumption
that the presence of a random diffusion with a fast decay of
correlations leads to weak correlations between consecutive T (x,1)=
flights (since they are always separated by long enough ran- 7Dt

dom motion in chaotic argaFrom the point of view of ki-

netics, ballistic flights can be characterized by the value of The propagator for timé=MT (whereT is some natural
the velocity and the duration of a single fliglg]. The ve-  system time scale, i.e., the period of an external dris¢he
locity of a flight is given by the winding number of the  convolution of all the elementary PDF's,

e Pty (1), @)

M M-n M-n—-..—g
P(x,MT)an}:)l k§=‘,l > WIx(M=n—---—DT]W(x,nT)- - Wy (x,IT), (3)

where the number of sums equals the number of relevarand durationt;. Then it jumps back to the RD block and
islandsN, andQ is a normalization constant. performs a random motion with a diffusion coefficiéhtind

All the needed information about the system kinetics isdurationt, chosen from the PDRj,. This process is then
contained in the PDF's of the flight times, the times of ran-jterated again and again. Each block is depicted in the system
dom diffusion, and the island weight factops. This re- g5 a vortex.
quires a preliminary examination of the phase space struc- The functionsy;(t) and i(t) have finite first moments,
ture. In the following section we describe a numericalgue to the Kac theorem about the finiteness of recurrence
procedure which helps to obtain the parameters of the kinetimes in a Hamiltonian systef.0]. Thus the mean times,

scheme. _ . (t;) and(t.), which the particle spends in every block are
The kinetic model can be viewed as the children’s con+jpite.

struction game LEGO: several BF-blocks, each with its own

“color” [PDF y;(t)], which are attached to the RD blocks

[with a “color” PDF y.(t)]. Every attachment is character- Il APPLICATIONS

ized by a “strength”p; . The evolution of the original Hamil-

tonian system can be modeled as walking over the corre- In this section we demonstrate how the above proposed
sponding kinetic schemgsee Fig. 1a)]. A particle jumps  kinetic approach can be used for the description and under-
randomly(following the probabilitie;) to theith BF block  standing of several phenomena of Hamiltonian kinetics.

and spends there some timechosen from the PDR;(t). As an example we consider the following Hamiltonian,
This stage corresponds to the ballistic flight with veloeity  which describes the classical motion of a particle in a spa-
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tially standing wave with a modulating amplitu@ecos(wt) @)
[9], 001
o
p2 8 1x10
H(p,x,t)=7+Ecos(x)co§(wt). (4) -
L o
e
o

The Hamiltonian is time and space periodic with peridds
=m/w and L=27, correspondingly. Such a Hamiltonian
system has been realized in atomic optics experiments, prob-
ing the motion of atoms in a wave produced by a laser field
[11].

We first study the case of chaotic diffusion in the system
described by Eq(4), using our building-blocks approach.
Then we investigate the effect of chaos-assisted transport
between two regular islands in the phase spacH (qf,x,t)
in Eq. (4). Finally, we study a current rectification mecha-
nism in a Hamiltonian ratchet system, which is created by
switching on an additional standing wave in the system in

<x*(t)>

Eq. (4).

(i) Chaotic diffusion The Hamiltonian in Eq(4) is sym- 10 : : :
metric with respect to time and space reversal transformation 10' 10° 10° 10° 10°
{t——t,x——x}, so a particle, whose dynamics obeys Eg. 1721

(4), performs a diffusive motion with a zero drift. The sym-
metry conditions mean that all islands with nonzero winding

number appear in phase space in pairs, such fist) the Gaussian approximation of a central part of the propagémpor.

= U-i(0), pi=p-i, vi=—v_i. .The corrfspondmg klnetlc Mean square displacement for the anomalous diffusion within cha-
scheme has therefore symmetric blocks; Bthd BF, with otic layer averaged over 4Q@rajectories(open circley and for the

opposite velocities but equal “colors)(t) and “strengths”  gtochastic process described by the kinetic scheme. The straight line

p- ) ] corresponds to the asymptotig?)«t?, y=1.6. All plotted quanti-
In Fig. 2(a) we show the propagatd?(x,t) for a fixed ties are dimensionless.

time t=100T, which has been obtained by averaging over

10° trajectories. The peaks in the propagator correspond tgisplacement is negligible. So one can assume that Bere
ballistic flights which a particle performs when it sticks to an =0. This means that flights with a power law PDFt)
island. The location of each peak is determined by the cordominate the long time scale behavior, in particular, the
responding winding number. One can use the propagator fahean squared displacement. For simulations we used the fol-
a given time to identify all relevant flights. In our case there|owing PDF[12]:

are only two main symmetry related regular islands,

FIG. 2. (@) The propagator for a fixed time=100T for the
Hamiltonian given by Eq(4), E=1, »=0.53. Dotted curve shows

R, ,R_, which lie at the border of the stochastic layer and , t<t,

have winding numbers.. = = 3L/2T. The corresponding ki- P(t)= AT t=>t 6)
netic scheme has therefore three blocks which are: a RD ’ ¢

block and two symmetry related BF blocks, BEnd BF . \yhereA is a normalization constant, ag=4T. The results

In order to determine the PDH;(t), we use a velocity of the simulation are shown in Fig(i. For long times we
gated techniquéB]. After each fixed time stefye;=4T We  obtain anomalous enhanced diffusion which yields the mean
check the displacement of the particdge=X(t+tsiep) square displacement
—X(t). If the resulting velocityAXgep/tsiep is close to the
corresponding winding number (within an uncertainty of (x®)ect? (6)
5%), we define this as a flight. Using this technique it is
possible to determine the the turning points and duration oWith y=1.6. The latter value is very close to the value 4
single flight segmentéwith an uncertainty of ), and, cor- —a=1.65 given by the theory in Ref3]. The evolution of
respondingly, the duration of the random diffusion. We havethe mean square displacement obtained from the kinetic
found that the PDFRy(t) for the single flight duration follows model for timest>10*T is close to that obtained from the
an asymptotic power-law behavigi(t) ~t~“ with the expo-  real Hamiltonian kinetic$Fig. 2(b)].
nenta=2.35. The BFs lead therefore to alyewalk process (ii) Population exchange between the islands of stability
and the overall diffusion has a strong anomalous characteLet us now consider the situation where there are only two
The chaotic lifetime PDF displays a well pronounced Pois-symmetry-related island®_ andR, , embedded in the cha-
son distributiony(t) = (1/7.)e" Y7 with 7.~345. Itis clear  otic sea. A particle, initially trapped near one of these islands,
that for long enough times of the system evolution the conimoves away from its initial location and performs a random
tribution of the random diffusional motion to the particle walk before it sticks again to an island. Chaotic diffusion can
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be viewed as some “communication channel” between the
islandsR_ andR. . In the case of an ensemble of particles,

initially prepared near one of the islands, this channel pro-
vides a possibility of population exchange between the is-
lands. How would the particles redistribute due to this chaos-
assisted “communication” between the islands?

Contrary to the previous diffusion problem, where for
long time we assum® =0, here the random diffusion is
essential to facilitate the exchange process. This classical
problem is interesting in the context of the chaos-assisted
tunneling effect, which has been observed recently in cold-
atom experiment§13,14. Here we look at the classical
counterpart of the effect.

As a model we use the Hamiltonian in E@) with pa-
rameters taken from the experiment in REf3]: w=m,E
=21. The corresponding Poincarsection has two
symmetry-related islandsR, and R_, v.=*2# [Fig.
3(@] [15].

The corresponding kinetic scheme, as in the previous
case, has three blocks, RD, BFand BF, . Here we are
interested in relaxation dynamics from the initially prepared
asymmetric state, where all the particles are located around
R, . For preparation of the initial ensemble we use our
BF-RD building blocks scheme and a trajectoryanie par-
ticle. Using the velocity gated technique we check the flight
status of the particle. If the particle performs the flight with a
duration of at least 2, we take the last coordinate,
[x(1);p(t)], as a point for the initial ensemblesee Fig.
3(a)]. Following the trajectory of onlpneparticle, using the
BF-RD approach, we extract information about the relax-
ation of initially “near-island” ensemble

As in Ref.[13] we are interested in the average velocity

L 6x10™

L 4x107

v(T)

1 S
V(nT)=§JZl [x,(nt)—x;(nt—T)], 7

whereSis number of particles in the ensemble. The evolu-
tion of the average velocity (nT) (for an ensemble witls
=10* particles is shown in Fig. ).
The characteristic time for the population exchange medi- FIG. 3. (a) Poincaresection for the Hamiltonian in Eq4), E
ated by chaotic diffusion corresponds to the first minimum in=21, o= 7. White area shows the initial ensemble located around
the time dependence of the mean ensemble velocity. Thithe islandR, . (b) Time dependence of the ensemble averaged ve-
occurs at.,.~9T. For timest~t.,.,a fraction of the par- locity, Eq. (7)(filled circles. Initial conditions as in Fig. &. The
ticles accumulates near the opposite isldd. Then this  Straight line corresponds to the asymptotic decay due to evapora-
process is reiterated and a small fraction of particles reaccdion, #(t)~t~*° The superimposed curve is the PDF for duration
mulates neaR, at time 2., which corresponds to the of rgndom walk_ events be.tween consecutive flights in opposite di-
local maximum in the velocity/(nT). rectlons(op_en circles (c) T_|me dependence_ of the ensemble aver-
The exchange of populations takes place on the backg9ed velocity for a short times scale. The inset shows the PDF for
ground of a slow process during which particles “evaporate"St.'Ckmg. times near a ballistic island. All plotted quantities are
L : . . o dimensionless.
from the vicinity of R, into the chaotic arepsee inset in Fig.
3(b)]. This process is governed by the PDF of escape timefor events between flights ioppositedirection (exchange
with the asymptotic behavioges~t~ Yesc, where yosc=a  between BF and BF) contains the information ofgy.p,
—2 [16]. For the parameters chosen here we obtain which is observed experimentally. Interestingly, one faces
=2.6. Using the velocity gate techniqaith an accuracy here two processes that dominate the exchange on different
3% and durationT) we obtain the PDF for the duration of times scales: the fast population exchange at early times and
random diffusion events between two consecutive flights irthe slow “evaporation” at long times. We conclude that the
oppositedirections[see Fig. 8)]. This PDF has a unique clasically observed population exchange is mainly a short
maximum neat,,.,. We assume that this PDF that accountstime effect.
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layer with the layer of ballistic islandsee Fig. 4a)]. This
overlap generates a current. Current invergioirroring the
layers overlap can be obtained by a simple shift inversion
p——¢porr—T—r.

It has been shown in Ref§7,8], that a directed current
stems from ballistic islands which are not compensated by
symmetry-related islands with opposite winding numbers.
Moreover, the chaotic diffusion does not contribute to the
current rectificatiord8]. Within the CTRW formalism, using
the asymmetric flight processes appro2f], it is easy to

0.0 ) S 5
20x10 t 40x10 6.0x10 obtain an expression for the current in the terms of BF and
RD blocks[7,8],
21072
4 (b) N
~ 1 241 pivi(ti)
g ) /-3 [ 3 J= ~N (9)
1, 1%10°%
2 > Pty +(to)
o 1
04— MW , where(t;) = [ty (t)dt and(t.)= [ty (t)dt.
-100 0 100 In Fig. 4b) we show the propagator for the Hamiltonian
x/L in Eg. (2) for a fixed timet=100T. One can see that the

FIG. 4. (8 x(t) vs t for the Hamiltonian ratchet, Eq8), E main contribution to the particle transport in the positive
-1 ©=15 E.=05 $#=1.2, 7=0.8. Inset shows the corre- direction comes directly from the main ballistic island with
’ Iy a oy Ly .0.

sponding Poincareection. The trajectory starts in the chaotic sea.U =L/T=1.5. The localized rotation is governed by the regu-
(b) The propagator for a fixed time=100T for the Hamiltonian lar island Ry with winding number v=0 near §,p)
ratchet, Eq(8). The figure demonstrates the strong current due to=(0,0). Namely, the corresponding kinetic scheme has three
asymmetric weight of positive flights. Inset displays sticky islandsblocks—RD, Blg, and BF, . In this case, for the calculation
which correspond to the main peaks in the propagator. All plottecof a current we need the mean tine, ) of the flight near
quantities are dimensionless. R, , the mean time for localizatiofty) nearR,, and the
mean timg(t.) of random diffusior{21]. For the numerically
Our kinetic scheme is close in essence to the three-statabtained values(t )~163, (to)~51, p,~0.44, and(t.)
model of chaos assisted tunnelifyj7]; in particular, the ~24, expressio9) yieldsJ,,qer~0.87, which is very close
value of the characteristic time for population exchange irto the result),,,~0.9 of direct numerical integration of the
the classical casgn units of the driving period’) is close to  Hamiltonian in Eq.(8) (see Fig. 4a)).
the time observed in real cold-atom systeh3].
(iii) Hamiltonian ratchet Following theratchetidea in
Ref. [18], it is possible to obtain a dc current in a Hamil- IV. CONCLUSION
tonian system using zero-mean external driviidg8,19. In o
order to do this we must break the time/spatial reversal sym- We have presented a BF-RD building blocks approach to
Hamiltonian in Eq.(4) can be broken by switching on an This approach provides a tool for understanding and analyz-

additional standing wave, shifted, in the time and space witfng different phenomena such as anomalous diffusion, popu-
respect to the first one, lation exchange between islands of stability, and current rec-

tification in Hamiltonian ratchets. The BF-RD model
reproduces nontrivial peculiarities of Hamiltonian kinetics
and allows to obtain new characteristics of dynamics in
mixed phase spaces, such as the characteristic time in chaos-
whereH(p,x,t) is the Hamiltonian in Eq(4), and¢ andr  assisted population exchange between islands.
are spatial and temporal shift constants &nds the ampli- Recently hierarchical graphs have been introduced in or-
tude of the second standing wave. While in caseand(ii) der to mimic the dynamics near islands with hierarchical
we have obtained an unbiased diffusion here we achieve dstructure§22]. These hierarchies lead to a power-law behav-
rectionality. ior of the sticking time PDH22]. Such an approach might
Switching on the second term in E), which provides help obtain the PDFs discussed above from walking on hier-
symmetry breaking in the island structure within the chaoticarchical graphg23]. We believe that the proposed kinetic
layer, results in an asymmetric overlap of the main chaoticscheme idea provides a different possibility for modeling of

Ha(p,x,t)=H(p,x,t) + E,cogx+ ¢)co(wt+ 1), (8)
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