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Ballistic flights and random diffusion as building blocks for Hamiltonian kinetics

S. Denisov, J. Klafter, and M. Urbakh
School of Chemistry, Tel-Aviv University, Tel-Aviv 69978, Israel

~Received 29 May 2002; published 24 October 2002!

We propose a kinetic approach to transport in Hamiltonian systems with a mixed phase space. The approach
is based on the decomposition of the dynamical picture into two contributions:~a! ballistic flights, and~b!
random diffusion. The kinetic scheme leads to a stochastic process with statistical properties which are similar
to those produced by the original Hamiltonian. We show that our approach helps in obtaining an insight into
several properties of Hamiltonian kinetics such as anomalous diffusion, chaos-assisted population exchange,
and current rectification. In particular, the chaos-assisted exchange offers a classical counterpart for the re-
cently reported chaos-assisted tunneling.
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I. INTRODUCTION

The issue of how statistical laws emerge from mic
scopic dynamical evolution has been a subject of interes
a long time@1#. In particular, the question of determinist
diffusion in Hamiltonian systems has been central in the fi
of nonlinear dynamics. Kinetic studies of Hamiltonian sy
tems have been shown to provide a link between stocha
processes and deterministic dynamics@2# and have led to
interesting examples of Brownian and anomalous motion@3#.

In general, characteristic to Hamiltonian systems
mixed phase spaces, which consist of chaotic and reg
regions. The presence of complex boundaries between t
regions makes a complete separation into chaotic and reg
regions impossible. Due to sticky barriers~formed bycantori
@4#!, a trajectory can be trapped for a long time near
corresponding regular islands and produce either long un
rectional flights or localized rotational motions. It is know
by now that such long correlated motions cause the failur
the simple Brownian description of Hamiltonian kineti
@2,3#. Examples for non-Brownian behavior are, among o
ers, the appearance of anomalous diffusion, for which
degree of anomaly depends on the statistical properties o
flights @2,3#, strongly nonuniform mixing@5#, and fractal
conductance fluctuations in billiard transmitters@6#. Re-
cently, it has been also shown that the generation of dire
currents in Hamiltonian ratchets is obtained by introduc
asymmetry into flights in opposite directions through bre
ing symmetry in the regular island structures in phase sp
@7,8#.

In this paper we show how the Hamiltonian kinetics c
be modeled using two types of ‘‘building blocks’’—ballisti
flights ~BF! and random diffusion~RD!. Following the
continuous-time random walk~CTRW! formalism @3#, we
construct a stochastic model which describes the trans
properties of the original Hamiltonian in terms of the
building blocks. We demonstrate that such an approach le
to new insights into phenomena typical of Hamiltonian s
tems with a mixed phase space.

The paper is organized as follows. In Sec. II we formul
the algorithm of the kinetic modeling using the BF and R
building blocks. For this purpose we need information ab
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the statistical properties of the original Hamiltonian syste
The result of such modeling is a kinetic scheme which le
to a process with the same basic statistical properties a
the trajectories in the Hamiltonian system. In Sec. III w
show how this approach can be used for the description
three different effects: deterministic Hamiltonian diffusio
chaos-assisted population exchange between islands,
current rectification in Hamiltonian ratchets. We end w
conclusions in Sec. IV.

FIG. 1. ~a! The kinetic scheme of a mixed phase space. No
tions are given in the text.~b! A trajectory corresponding to the
Hamiltonian in Eq.~4! with v52p, E55. The inset shows part o
Poincare` section that corresponds to the long flight in the posit
direction. All plotted quantities are dimensionless.
©2002 The American Physical Society17-1
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II. BUILDING OF THE KINETIC SCHEME

Many Hamiltonian systems are generically nonintegra
and have a mixed phase space which contains chaotic
gions and regular islands@9#. These islands are impermeab
to chaotic trajectories and, at first glance, do not contribut
the system kinetics. But the exclusion of the regular isla
from consideration is incorrect due to the presence
‘‘sticky’’ complex boundaries between chaotic and regu
regions. Due to a set of barriers, formed by cantori@4# a
trajectory can be trapped for a long time near the correspo
ing islands. This leads to the appearance of long balli
flights ~in the case of nonzero winding numbersv of the
islands! or to a localized rotational motion~for the winding
numberv50). For some islands the sticking times near t
boundaries can be anomalously long resulting in Le´vy walks
@2,3#. So, the regular islands manifest themselvesdynami-
cally as segments of ballistic motion in the trajectories@see
inset in Fig. 1~b!#. The trajectories between two consecuti
flights display random Brownian motion that can be d
scribed by some diffusion coefficient.

Following the CTRW formalism@3#, the Hamiltonian ki-
netics can be represented as a set of alternating piece
random diffusion~RD! and ballistic flights~BF!. The appli-
cability of the CTRW description stems from the assumpt
that the presence of a random diffusion with a fast decay
correlations leads to weak correlations between consecu
flights ~since they are always separated by long enough
dom motion in chaotic area!. From the point of view of ki-
netics, ballistic flights can be characterized by the value
the velocity and the duration of a single flight@3#. The ve-
locity of a flight is given by the winding numberv of the
a
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corresponding island. The duration of the flights can be co
pletely characterized by the probability density functi
~PDF! of the sticking times to the boundary of the islan
@3#.

Assume that there existN different islands with winding
numberv i , i 51, . . . ,N, which are embedded in the chaot
area. Every island is characterized by a PDFc i(t) of sticking
times. The random diffusion is characterized by a P
cc(t). The probability of sticking to thei th island, after the
end of a random diffusion event, ispi . The probabilitypi is
the weight factor of islandi, namely, its contribution to the
total dynamical evolution of a system. Due to the conser
tion of probability( i 51

n pi51.
The kinetics of the system can be obtained from

propagatorP(x,t), i.e., the probability density of a particl
to be atx at timet @4#. This function can be constructed from
the elementary events which include flights and random
fusion. We define a flight event by the probability density@3#

C i~x,t !5pid~x2v i t !c i~ t !, ~1!

which accounts for the velocityv i and the distribution of
sticking timesc i(t), which correspond to islandi.

The random diffusion events are chosen from the PDF

Cc~x,t !5
1

ApDt
e2x2/Dtcc~ t !. ~2!

The propagator for timet5MT ~whereT is some natural
system time scale, i.e., the period of an external drive! is the
convolution of all the elementary PDF’s,
P~x,MT!5Q(
n51

M

(
k51

M2n

••• (
l 51

M2n2•••2g

Cc@x,~M2n2•••2 l !T#C1~x,nT!•••CN~x,lT !, ~3!
d

tem

,
nce
,
re

sed
der-

n,
pa-
where the number of sums equals the number of relev
islandsN, andQ is a normalization constant.

All the needed information about the system kinetics
contained in the PDF’s of the flight times, the times of ra
dom diffusion, and the island weight factorspi . This re-
quires a preliminary examination of the phase space st
ture. In the following section we describe a numeric
procedure which helps to obtain the parameters of the kin
scheme.

The kinetic model can be viewed as the children’s co
struction game LEGO: several BF-blocks, each with its o
‘‘color’’ @PDF c i(t)], which are attached to the RD block
@with a ‘‘color’’ PDF cc(t)]. Every attachment is characte
ized by a ‘‘strength’’pi . The evolution of the original Hamil-
tonian system can be modeled as walking over the co
sponding kinetic scheme@see Fig. 1~a!#. A particle jumps
randomly~following the probabilitiespi) to thei th BF block
and spends there some timet i chosen from the PDFc i(t).
This stage corresponds to the ballistic flight with velocityv i
nt

s
-

c-
l
ic

-
n

e-

and durationt i . Then it jumps back to the RD block an
performs a random motion with a diffusion coefficientD and
duration tc chosen from the PDFcc . This process is then
iterated again and again. Each block is depicted in the sys
as a vortex.

The functionsc i(t) andcc(t) have finite first moments
due to the Kac theorem about the finiteness of recurre
times in a Hamiltonian system@10#. Thus the mean times
^t i& and ^tc&, which the particle spends in every block a
finite.

III. APPLICATIONS

In this section we demonstrate how the above propo
kinetic approach can be used for the description and un
standing of several phenomena of Hamiltonian kinetics.

As an example we consider the following Hamiltonia
which describes the classical motion of a particle in a s
7-2
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tially standing wave with a modulating amplitudeE cos2(vt)
@9#,

H~p,x,t !5
p2

2
1E cos~x!cos2~vt !. ~4!

The Hamiltonian is time and space periodic with periodsT
5p/v and L52p, correspondingly. Such a Hamiltonia
system has been realized in atomic optics experiments, p
ing the motion of atoms in a wave produced by a laser fi
@11#.

We first study the case of chaotic diffusion in the syst
described by Eq.~4!, using our building-blocks approach
Then we investigate the effect of chaos-assisted trans
between two regular islands in the phase space ofH(p,x,t)
in Eq. ~4!. Finally, we study a current rectification mech
nism in a Hamiltonian ratchet system, which is created
switching on an additional standing wave in the system
Eq. ~4!.

~i! Chaotic diffusion. The Hamiltonian in Eq.~4! is sym-
metric with respect to time and space reversal transforma
$t→2t,x→2x%, so a particle, whose dynamics obeys E
~4!, performs a diffusive motion with a zero drift. The sym
metry conditions mean that all islands with nonzero wind
number appear in phase space in pairs, such that$c i(t)
5c2 i(t), pi5p2 i , v i52v2 i%. The corresponding kinetic
scheme has therefore symmetric blocks, BFi

1 and BFi
2 , with

opposite velocities but equal ‘‘colors’’c(t) and ‘‘strengths’’
p.

In Fig. 2~a! we show the propagatorP(x,t) for a fixed
time t5100T, which has been obtained by averaging ov
105 trajectories. The peaks in the propagator correspon
ballistic flights which a particle performs when it sticks to
island. The location of each peak is determined by the c
responding winding number. One can use the propagato
a given time to identify all relevant flights. In our case the
are only two main symmetry related regular island
R1 ,R2 , which lie at the border of the stochastic layer a
have winding numbersv6563L/2T. The corresponding ki-
netic scheme has therefore three blocks which are: a
block and two symmetry related BF blocks, BFi

1 and BFi
2 .

In order to determine the PDF,c i(t), we use a velocity
gated technique@8#. After each fixed time steptstep54T we
check the displacement of the particleDxstep5x(t1tstep)
2x(t). If the resulting velocityDxstep/tstep is close to the
corresponding winding numberv ~within an uncertainty of
5%), we define this as a flight. Using this technique it
possible to determine the the turning points and duration
single flight segments~with an uncertainty of 4T), and, cor-
respondingly, the duration of the random diffusion. We ha
found that the PDFc(t) for the single flight duration follows
an asymptotic power-law behaviorc(t);t2a with the expo-
nenta.2.35. The BFs lead therefore to a Le´vy walk process
and the overall diffusion has a strong anomalous chara
The chaotic lifetime PDF displays a well pronounced Po
son distributioncc(t).(1/tc)e

2t/tc with tc'345. It is clear
that for long enough times of the system evolution the c
tribution of the random diffusional motion to the partic
04621
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displacement is negligible. So one can assume that herD
50. This means that flights with a power law PDFc(t)
dominate the long time scale behavior, in particular,
mean squared displacement. For simulations we used the
lowing PDF @12#:

c~ t !5H 0, t,tc

At2a, t>tc ,
~5!

whereA is a normalization constant, andtc54T. The results
of the simulation are shown in Fig. 2~b!. For long times we
obtain anomalous enhanced diffusion which yields the m
square displacement

^x2&}tg ~6!

with g51.6. The latter value is very close to the value
2a51.65 given by the theory in Ref.@3#. The evolution of
the mean square displacement obtained from the kin
model for timest.104T is close to that obtained from th
real Hamiltonian kinetics@Fig. 2~b!#.

~ii ! Population exchange between the islands of stabil.
Let us now consider the situation where there are only t
symmetry-related islands,R2 andR1 , embedded in the cha
otic sea. A particle, initially trapped near one of these islan
moves away from its initial location and performs a rando
walk before it sticks again to an island. Chaotic diffusion c

FIG. 2. ~a! The propagator for a fixed timet5100T for the
Hamiltonian given by Eq.~4!, E51, v50.53. Dotted curve shows
the Gaussian approximation of a central part of the propagator~b!
Mean square displacement for the anomalous diffusion within c
otic layer averaged over 104 trajectories~open circles! and for the
stochastic process described by the kinetic scheme. The straigh
corresponds to the asymptotic^x2&}tg, g51.6. All plotted quanti-
ties are dimensionless.
7-3
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be viewed as some ‘‘communication channel’’ between
islandsR2 andR1 . In the case of an ensemble of particle
initially prepared near one of the islands, this channel p
vides a possibility of population exchange between the
lands. How would the particles redistribute due to this cha
assisted ‘‘communication’’ between the islands?

Contrary to the previous diffusion problem, where f
long time we assumeD50, here the random diffusion i
essential to facilitate the exchange process. This class
problem is interesting in the context of the chaos-assis
tunneling effect, which has been observed recently in co
atom experiments@13,14#. Here we look at the classica
counterpart of the effect.

As a model we use the Hamiltonian in Eq.~4! with pa-
rameters taken from the experiment in Ref.@13#: v5p,E
521. The corresponding Poincare` section has two
symmetry-related islands,R1 and R2 , v6562p @Fig.
3~a!# @15#.

The corresponding kinetic scheme, as in the previ
case, has three blocks, RD, BF2 , and BF1 . Here we are
interested in relaxation dynamics from the initially prepar
asymmetric state, where all the particles are located aro
R1 . For preparation of the initial ensemble we use o
BF-RD building blocks scheme and a trajectory ofonepar-
ticle. Using the velocity gated technique we check the flig
status of the particle. If the particle performs the flight with
duration of at least 2T, we take the last coordinate
@x(t);p(t)#, as a point for the initial ensemble@see Fig.
3~a!#. Following the trajectory of onlyoneparticle, using the
BF-RD approach, we extract information about the rela
ation of initially ‘‘near-island’’ ensemble.

As in Ref. @13# we are interested in the average veloci

V~nT!5
1

S (
j 51

S

@xj~nt!2xj~nt2T!#, ~7!

whereS is number of particles in the ensemble. The evo
tion of the average velocityV(nT) ~for an ensemble withS
5104 particles! is shown in Fig. 3~b!.

The characteristic time for the population exchange me
ated by chaotic diffusion corresponds to the first minimum
the time dependence of the mean ensemble velocity. T
occurs attexch.9T. For timest;texch a fraction of the par-
ticles accumulates near the opposite islandR2 . Then this
process is reiterated and a small fraction of particles rea
mulates nearR1 at time 2texch which corresponds to the
local maximum in the velocityV(nT).

The exchange of populations takes place on the ba
ground of a slow process during which particles ‘‘evapora
from the vicinity ofR1 into the chaotic area@see inset in Fig.
3~b!#. This process is governed by the PDF of escape tim
with the asymptotic behaviorcesc;t2gesc, wheregesc5a
22 @16#. For the parameters chosen here we obtaina
52.6. Using the velocity gate technique~with an accuracy
3% and durationT) we obtain the PDF for the duration o
random diffusion events between two consecutive flights
oppositedirections@see Fig. 3~b!#. This PDF has a unique
maximum neartexch. We assume that this PDF that accoun
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for events between flights inoppositedirection ~exchange
between BF1 and BF2) contains the information ontexch
which is observed experimentally. Interestingly, one fac
here two processes that dominate the exchange on diffe
times scales: the fast population exchange at early times
the slow ‘‘evaporation’’ at long times. We conclude that th
clasically observed population exchange is mainly a sh
time effect.

FIG. 3. ~a! Poincare` section for the Hamiltonian in Eq.~4!, E
521, v5p. White area shows the initial ensemble located arou
the islandR1 . ~b! Time dependence of the ensemble averaged
locity, Eq. ~7!~filled circles!. Initial conditions as in Fig. 3~a!. The
straight line corresponds to the asymptotic decay due to evap
tion, c(t);t20.6. The superimposed curve is the PDF for durati
of random walk events between consecutive flights in opposite
rections~open circles!. ~c! Time dependence of the ensemble av
aged velocity for a short times scale. The inset shows the PDF
sticking times near a ballistic island. All plotted quantities a
dimensionless.
7-4
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Our kinetic scheme is close in essence to the three-s
model of chaos assisted tunneling@17#; in particular, the
value of the characteristic time for population exchange
the classical case~in units of the driving periodT) is close to
the time observed in real cold-atom systems@13#.

~iii ! Hamiltonian ratchet. Following the ratchet idea in
Ref. @18#, it is possible to obtain a dc current in a Ham
tonian system using zero-mean external driving@7,8,19#. In
order to do this we must break the time/spatial reversal s
metry of the system@19#. All relevant symmetries of the
Hamiltonian in Eq.~4! can be broken by switching on a
additional standing wave, shifted, in the time and space w
respect to the first one,

Ha~p,x,t !5H~p,x,t !1Eacos~x1f!cos2~vt1t!, ~8!

whereH(p,x,t) is the Hamiltonian in Eq.~4!, andf andt
are spatial and temporal shift constants andEa is the ampli-
tude of the second standing wave. While in cases~i! and~ii !
we have obtained an unbiased diffusion here we achieve
rectionality.

Switching on the second term in Eq.~8!, which provides
symmetry breaking in the island structure within the chao
layer, results in an asymmetric overlap of the main chao

FIG. 4. ~a! x(t) vs t for the Hamiltonian ratchet, Eq.~8!, E
51, v51.5, Ea50.5, f51.2, t50.8. Inset shows the corre
sponding Poincare` section. The trajectory starts in the chaotic s
~b! The propagator for a fixed timet5100T for the Hamiltonian
ratchet, Eq.~8!. The figure demonstrates the strong current due
asymmetric weight of positive flights. Inset displays sticky islan
which correspond to the main peaks in the propagator. All plot
quantities are dimensionless.
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layer with the layer of ballistic islands@see Fig. 4~a!#. This
overlap generates a current. Current inversion~mirroring the
layers overlap! can be obtained by a simple shift inversio
f→2f or t→T2t.

It has been shown in Refs.@7,8#, that a directed curren
stems from ballistic islands which are not compensated
symmetry-related islands with opposite winding numbe
Moreover, the chaotic diffusion does not contribute to t
current rectification@8#. Within the CTRW formalism, using
the asymmetric flight processes approach@20#, it is easy to
obtain an expression for the current in the terms of BF a
RD blocks@7,8#,

J5

(
i 51

N

piv i^t i&

(
i

N

pi^t i&1^tc&

, ~9!

where^t i&5*0
`tc i(t)dt and ^tc&5*0

`tcc(t)dt.
In Fig. 4~b! we show the propagator for the Hamiltonia

in Eq. ~2! for a fixed time t5100T. One can see that th
main contribution to the particle transport in the positi
direction comes directly from the main ballistic island wi
v5L/T51.5. The localized rotation is governed by the reg
lar island R0 with winding number y50 near (x,p)
5(0,0). Namely, the corresponding kinetic scheme has th
blocks—RD, BF0, and BF1 . In this case, for the calculation
of a current we need the mean time^t1& of the flight near
R1 , the mean time for localization̂t0& near R0, and the
mean timê tc& of random diffusion@21#. For the numerically
obtained values,̂ t1&'163, ^t0&'51, p1'0.44, and^tc&
'24, expression~9! yieldsJmodel'0.87, which is very close
to the resultJnum'0.9 of direct numerical integration of th
Hamiltonian in Eq.~8! ~see Fig. 4~a!!.

IV. CONCLUSION

We have presented a BF-RD building blocks approach
kinetics of Hamiltonian systems with a mixed phase spa
This approach provides a tool for understanding and ana
ing different phenomena such as anomalous diffusion, po
lation exchange between islands of stability, and current r
tification in Hamiltonian ratchets. The BF-RD mod
reproduces nontrivial peculiarities of Hamiltonian kineti
and allows to obtain new characteristics of dynamics
mixed phase spaces, such as the characteristic time in ch
assisted population exchange between islands.

Recently hierarchical graphs have been introduced in
der to mimic the dynamics near islands with hierarchi
structures@22#. These hierarchies lead to a power-law beha
ior of the sticking time PDF@22#. Such an approach migh
help obtain the PDFs discussed above from walking on h
archical graphs@23#. We believe that the proposed kinet
scheme idea provides a different possibility for modeling
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dynamics in mixed phase spaces, especially when comb
with a PDF derivation. Our model allows also for furth
extensions such as the inclusion of correlations betw
sticking processes to different islands.
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